Electrical Engineering and Systems Science > Systems and Control
[Submitted on 21 Jul 2024]
Title:Efficient Sampling for Data-Driven Frequency Stability Constraint via Forward-Mode Automatic Differentiation
View PDF HTML (experimental)Abstract:Encoding frequency stability constraints in the operation problem is challenging due to its complex dynamics. Recently, data-driven approaches have been proposed to learn the stability criteria offline with the trained model embedded as a constraint of online optimization. However, random sampling of stationary operation points is less efficient in generating balanced stable and unstable samples. Meanwhile, the performance of such a model is strongly dependent on the quality of the training dataset. Observing this research gap, we propose a gradient-based data generation method via forward-mode automatic differentiation. In this method, the original dynamic system is augmented with new states that represent the dynamic of sensitivities of the original states, which can be solved by invoking any ODE solver for a single time. To compensate for the contradiction between the gradient of various frequency stability criteria, gradient surgery is proposed by projecting the gradient on the normal plane of the other. In the end, we demonstrate the superior performance of the proposed sampling algorithm, compared with the unrolling differentiation and finite difference. All codes are available at this https URL.
Current browse context:
eess.SY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.