Computer Science > Computer Vision and Pattern Recognition
[Submitted on 21 Jul 2024]
Title:Mask Guided Gated Convolution for Amodal Content Completion
View PDFAbstract:We present a model to reconstruct partially visible objects. The model takes a mask as an input, which we call weighted mask. The mask is utilized by gated convolutions to assign more weight to the visible pixels of the occluded instance compared to the background, while ignoring the features of the invisible pixels. By drawing more attention from the visible region, our model can predict the invisible patch more effectively than the baseline models, especially in instances with uniform texture. The model is trained on COCOA dataset and two subsets of it in a self-supervised manner. The results demonstrate that our model generates higher quality and more texture-rich outputs compared to baseline models. Code is available at: this https URL.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.