Computer Science > Computation and Language
[Submitted on 24 Jul 2024]
Title:Coupling Speech Encoders with Downstream Text Models
View PDF HTML (experimental)Abstract:We present a modular approach to building cascade speech translation (AST) models that guarantees that the resulting model performs no worse than the 1-best cascade baseline while preserving state-of-the-art speech recognition (ASR) and text translation (MT) performance for a given task. Our novel contribution is the use of an ``exporter'' layer that is trained under L2-loss to ensure a strong match between ASR embeddings and the MT token embeddings for the 1-best sequence. The ``exporter'' output embeddings are fed directly to the MT model in lieu of 1-best token embeddings, thus guaranteeing that the resulting model performs no worse than the 1-best cascade baseline, while allowing back-propagation gradient to flow from the MT model into the ASR components. The matched-embeddings cascade architecture provide a significant improvement over its 1-best counterpart in scenarios where incremental training of the MT model is not an option and yet we seek to improve quality by leveraging (speech, transcription, translated transcription) data provided with the AST task. The gain disappears when the MT model is incrementally trained on the parallel text data available with the AST task. The approach holds promise for other scenarios that seek to couple ASR encoders and immutable text models, such at large language models (LLM).
Current browse context:
cs.CL
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.