Computer Science > Machine Learning
[Submitted on 27 Jul 2024 (v1), last revised 25 Nov 2024 (this version, v2)]
Title:Towards the Dynamics of a DNN Learning Symbolic Interactions
View PDF HTML (experimental)Abstract:This study proves the two-phase dynamics of a deep neural network (DNN) learning interactions. Despite the long disappointing view of the faithfulness of post-hoc explanation of a DNN, a series of theorems have been proven in recent years to show that for a given input sample, a small set of interactions between input variables can be considered as primitive inference patterns that faithfully represent a DNN's detailed inference logic on that sample. Particularly, Zhang et al. have observed that various DNNs all learn interactions of different complexities in two distinct phases, and this two-phase dynamics well explains how a DNN changes from under-fitting to over-fitting. Therefore, in this study, we mathematically prove the two-phase dynamics of interactions, providing a theoretical mechanism for how the generalization power of a DNN changes during the training process. Experiments show that our theory well predicts the real dynamics of interactions on different DNNs trained for various tasks.
Submission history
From: Quanshi Zhang [view email] [via Quanshi Zhang as proxy][v1] Sat, 27 Jul 2024 07:34:49 UTC (1,156 KB)
[v2] Mon, 25 Nov 2024 08:57:20 UTC (1,506 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.