Physics > Fluid Dynamics
[Submitted on 30 Jul 2024]
Title:AhmedML: High-Fidelity Computational Fluid Dynamics Dataset for Incompressible, Low-Speed Bluff Body Aerodynamics
View PDF HTML (experimental)Abstract:The development of Machine Learning (ML) methods for Computational Fluid Dynamics (CFD) is currently limited by the lack of openly available training data. This paper presents a new open-source dataset comprising of high fidelity, scale-resolving CFD simulations of 500 geometric variations of the Ahmed Car Body - a simplified car-like shape that exhibits many of the flow topologies that are present on bluff bodies such as road vehicles. The dataset contains simulation results that exhibit a broad set of fundamental flow physics such as geometry and pressure-induced flow separation as well as 3D vortical structures. Each variation of the Ahmed car body were run using a high-fidelity, time-accurate, hybrid Reynolds-Averaged Navier-Stokes (RANS) - Large-Eddy Simulation (LES) turbulence modelling approach using the open-source CFD code OpenFOAM. The dataset contains boundary, volume, geometry, and time-averaged forces/moments in widely used open-source formats. In addition, the OpenFOAM case setup is provided so that others can reproduce or extend the dataset. This represents to the authors knowledge, the first open-source large-scale dataset using high-fidelity CFD methods for the widely used Ahmed car body that is available to freely download with a permissive license (CC-BY-SA).
Current browse context:
physics.flu-dyn
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.