Computer Science > Human-Computer Interaction
[Submitted on 2 Aug 2024 (v1), last revised 5 Aug 2024 (this version, v2)]
Title:DASH: A Bimodal Data Exploration Tool for Interactive Text and Visualizations
View PDF HTML (experimental)Abstract:Integrating textual content, such as titles, annotations, and captions, with visualizations facilitates comprehension and takeaways during data exploration. Yet current tools often lack mechanisms for integrating meaningful long-form prose with visual data. This paper introduces DASH, a bimodal data exploration tool that supports integrating semantic levels into the interactive process of visualization and text-based analysis. DASH operationalizes a modified version of Lundgard et al.'s semantic hierarchy model that categorizes data descriptions into four levels ranging from basic encodings to high-level insights. By leveraging this structured semantic level framework and a large language model's text generation capabilities, DASH enables the creation of data-driven narratives via drag-and-drop user interaction. Through a preliminary user evaluation, we discuss the utility of DASH's text and chart integration capabilities when participants perform data exploration with the tool.
Submission history
From: Dennis Bromley [view email][v1] Fri, 2 Aug 2024 05:08:48 UTC (3,333 KB)
[v2] Mon, 5 Aug 2024 20:58:50 UTC (4,859 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.