Computer Science > Computer Vision and Pattern Recognition
[Submitted on 3 Aug 2024 (v1), last revised 9 Sep 2024 (this version, v2)]
Title:SiamMo: Siamese Motion-Centric 3D Object Tracking
View PDF HTML (experimental)Abstract:Current 3D single object tracking methods primarily rely on the Siamese matching-based paradigm, which struggles with textureless and incomplete LiDAR point clouds. Conversely, the motion-centric paradigm avoids appearance matching, thus overcoming these issues. However, its complex multi-stage pipeline and the limited temporal modeling capability of a single-stream architecture constrain its potential. In this paper, we introduce SiamMo, a novel and simple Siamese motion-centric tracking approach. Unlike the traditional single-stream architecture, we employ Siamese feature extraction for motion-centric tracking. This decouples feature extraction from temporal fusion, significantly enhancing tracking performance. Additionally, we design a Spatio-Temporal Feature Aggregation module to integrate Siamese features at multiple scales, capturing motion information effectively. We also introduce a Box-aware Feature Encoding module to encode object size priors into motion estimation. SiamMo is a purely motion-centric tracker that eliminates the need for additional processes like segmentation and box refinement. Without whistles and bells, SiamMo not only surpasses state-of-the-art methods across multiple benchmarks but also demonstrates exceptional robustness in challenging scenarios. SiamMo sets a new record on the KITTI tracking benchmark with 90.1\% precision while maintaining a high inference speed of 108 FPS. The code will be released at this https URL.
Submission history
From: Yingqi Deng [view email][v1] Sat, 3 Aug 2024 07:02:01 UTC (3,475 KB)
[v2] Mon, 9 Sep 2024 05:24:27 UTC (3,475 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.