Computer Science > Computation and Language
[Submitted on 7 Aug 2024]
Title:A Comparison of LLM Finetuning Methods & Evaluation Metrics with Travel Chatbot Use Case
View PDF HTML (experimental)Abstract:This research compares large language model (LLM) fine-tuning methods, including Quantized Low Rank Adapter (QLoRA), Retrieval Augmented fine-tuning (RAFT), and Reinforcement Learning from Human Feedback (RLHF), and additionally compared LLM evaluation methods including End to End (E2E) benchmark method of "Golden Answers", traditional natural language processing (NLP) metrics, RAG Assessment (Ragas), OpenAI GPT-4 evaluation metrics, and human evaluation, using the travel chatbot use case. The travel dataset was sourced from the the Reddit API by requesting posts from travel-related subreddits to get travel-related conversation prompts and personalized travel experiences, and augmented for each fine-tuning method. We used two pretrained LLMs utilized for fine-tuning research: LLaMa 2 7B, and Mistral 7B. QLoRA and RAFT are applied to the two pretrained models. The inferences from these models are extensively evaluated against the aforementioned metrics. The best model according to human evaluation and some GPT-4 metrics was Mistral RAFT, so this underwent a Reinforcement Learning from Human Feedback (RLHF) training pipeline, and ultimately was evaluated as the best model. Our main findings are that: 1) quantitative and Ragas metrics do not align with human evaluation, 2) Open AI GPT-4 evaluation most aligns with human evaluation, 3) it is essential to keep humans in the loop for evaluation because, 4) traditional NLP metrics insufficient, 5) Mistral generally outperformed LLaMa, 6) RAFT outperforms QLoRA, but still needs postprocessing, 7) RLHF improves model performance significantly. Next steps include improving data quality, increasing data quantity, exploring RAG methods, and focusing data collection on a specific city, which would improve data quality by narrowing the focus, while creating a useful product.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.