Computer Science > Machine Learning
[Submitted on 7 Aug 2024 (v1), last revised 19 Sep 2024 (this version, v3)]
Title:Online Model-based Anomaly Detection in Multivariate Time Series: Taxonomy, Survey, Research Challenges and Future Directions
View PDF HTML (experimental)Abstract:Time-series anomaly detection plays an important role in engineering processes, like development, manufacturing and other operations involving dynamic systems. These processes can greatly benefit from advances in the field, as state-of-the-art approaches may aid in cases involving, for example, highly dimensional data. To provide the reader with understanding of the terminology, this survey introduces a novel taxonomy where a distinction between online and offline, and training and inference is made. Additionally, it presents the most popular data sets and evaluation metrics used in the literature, as well as a detailed analysis. Furthermore, this survey provides an extensive overview of the state-of-the-art model-based online semi- and unsupervised anomaly detection approaches for multivariate time-series data, categorising them into different model families and other properties. The biggest research challenge revolves around benchmarking, as currently there is no reliable way to compare different approaches against one another. This problem is two-fold: on the one hand, public data sets suffers from at least one fundamental flaw, while on the other hand, there is a lack of intuitive and representative evaluation metrics in the field. Moreover, the way most publications choose a detection threshold disregards real-world conditions, which hinders the application in the real world. To allow for tangible advances in the field, these issues must be addressed in future work.
Submission history
From: Lucas Correia [view email][v1] Wed, 7 Aug 2024 13:01:10 UTC (326 KB)
[v2] Fri, 9 Aug 2024 08:10:52 UTC (326 KB)
[v3] Thu, 19 Sep 2024 07:06:15 UTC (326 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.