Computer Science > Machine Learning
[Submitted on 9 Aug 2024 (v1), last revised 21 Aug 2024 (this version, v2)]
Title:Node Level Graph Autoencoder: Unified Pretraining for Textual Graph Learning
View PDF HTML (experimental)Abstract:Textual graphs are ubiquitous in real-world applications, featuring rich text information with complex relationships, which enables advanced research across various fields. Textual graph representation learning aims to generate low-dimensional feature embeddings from textual graphs that can improve the performance of downstream tasks. A high-quality feature embedding should effectively capture both the structural and the textual information in a textual graph. However, most textual graph dataset benchmarks rely on word2vec techniques to generate feature embeddings, which inherently limits their capabilities. Recent works on textual graph representation learning can be categorized into two folds: supervised and unsupervised methods. Supervised methods finetune a language model on labeled nodes, which have limited capabilities when labeled data is scarce. Unsupervised methods, on the other hand, extract feature embeddings by developing complex training pipelines. To address these limitations, we propose a novel unified unsupervised learning autoencoder framework, named Node Level Graph AutoEncoder (NodeGAE). We employ language models as the backbone of the autoencoder, with pretraining on text reconstruction. Additionally, we add an auxiliary loss term to make the feature embeddings aware of the local graph structure. Our method maintains simplicity in the training process and demonstrates generalizability across diverse textual graphs and downstream tasks. We evaluate our method on two core graph representation learning downstream tasks: node classification and link prediction. Comprehensive experiments demonstrate that our approach substantially enhances the performance of diverse graph neural networks (GNNs) across multiple textual graph datasets.
Submission history
From: Qi Hu [view email][v1] Fri, 9 Aug 2024 14:57:53 UTC (1,539 KB)
[v2] Wed, 21 Aug 2024 05:58:36 UTC (1,539 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.