Computer Science > Human-Computer Interaction
[Submitted on 15 Aug 2024]
Title:Voicing Uncertainty: How Speech, Text, and Visualizations Influence Decisions with Data Uncertainty
View PDF HTML (experimental)Abstract:Understanding and communicating data uncertainty is crucial for informed decision-making across various domains, including finance, healthcare, and public policy. This study investigates the impact of gender and acoustic variables on decision-making, confidence, and trust through a crowdsourced experiment. We compared visualization-only representations of uncertainty to text-forward and speech-forward bimodal representations, including multiple synthetic voices across gender. Speech-forward representations led to an increase in risky decisions, and text-forward representations led to lower confidence. Contrary to prior work, speech-forward forecasts did not receive higher ratings of trust. Higher normalized pitch led to a slight increase in decision confidence, but other voice characteristics had minimal impact on decisions and trust. An exploratory analysis of accented speech showed consistent results with the main experiment and additionally indicated lower trust ratings for information presented in Indian and Kenyan accents. The results underscore the importance of considering acoustic and contextual factors in presentation of data uncertainty.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.