Computer Science > Data Structures and Algorithms
[Submitted on 24 Aug 2024]
Title:The Parameterized Complexity Landscape of Two-Sets Cut-Uncut
View PDF HTML (experimental)Abstract:In Two-Sets Cut-Uncut, we are given an undirected graph $G=(V,E)$ and two terminal sets $S$ and $T$. The task is to find a minimum cut $C$ in $G$ (if there is any) separating $S$ from $T$ under the following ``uncut'' condition. In the graph $(V,E \setminus C)$, the terminals in each terminal set remain in the same connected component. In spite of the superficial similarity to the classic problem Minimum $s$-$t$-Cut, Two-Sets Cut-Uncut is computationally challenging. In particular, even deciding whether such a cut of any size exists, is already NP-complete. We initiate a systematic study of Two-Sets Cut-Uncut within the context of parameterized complexity. By leveraging known relations between many well-studied graph parameters, we characterize the structural properties of input graphs that allow for polynomial kernels, fixed-parameter tractability (FPT), and slicewise polynomial algorithms (XP). Our main contribution is the near-complete establishment of the complexity of these algorithmic properties within the described hierarchy of graph parameters. On a technical level, our main results are fixed-parameter tractability for the (vertex-deletion) distance to cographs and an OR-cross composition excluding polynomial kernels for the vertex cover number of the input graph (under the standard complexity assumption NP is not contained in coNP/poly).
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.