Computer Science > Machine Learning
[Submitted on 22 Aug 2024]
Title:Multimodal Methods for Analyzing Learning and Training Environments: A Systematic Literature Review
View PDF HTML (experimental)Abstract:Recent technological advancements have enhanced our ability to collect and analyze rich multimodal data (e.g., speech, video, and eye gaze) to better inform learning and training experiences. While previous reviews have focused on parts of the multimodal pipeline (e.g., conceptual models and data fusion), a comprehensive literature review on the methods informing multimodal learning and training environments has not been conducted. This literature review provides an in-depth analysis of research methods in these environments, proposing a taxonomy and framework that encapsulates recent methodological advances in this field and characterizes the multimodal domain in terms of five modality groups: Natural Language, Video, Sensors, Human-Centered, and Environment Logs. We introduce a novel data fusion category -- mid fusion -- and a graph-based technique for refining literature reviews, termed citation graph pruning. Our analysis reveals that leveraging multiple modalities offers a more holistic understanding of the behaviors and outcomes of learners and trainees. Even when multimodality does not enhance predictive accuracy, it often uncovers patterns that contextualize and elucidate unimodal data, revealing subtleties that a single modality may miss. However, there remains a need for further research to bridge the divide between multimodal learning and training studies and foundational AI research.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.