Computer Science > Software Engineering
[Submitted on 1 Sep 2024]
Title:LLMs as Evaluators: A Novel Approach to Evaluate Bug Report Summarization
View PDF HTML (experimental)Abstract:Summarizing software artifacts is an important task that has been thoroughly researched. For evaluating software summarization approaches, human judgment is still the most trusted evaluation. However, it is time-consuming and fatiguing for evaluators, making it challenging to scale and reproduce. Large Language Models (LLMs) have demonstrated remarkable capabilities in various software engineering tasks, motivating us to explore their potential as automatic evaluators for approaches that aim to summarize software artifacts. In this study, we investigate whether LLMs can evaluate bug report summarization effectively. We conducted an experiment in which we presented the same set of bug summarization problems to humans and three LLMs (GPT-4o, LLaMA-3, and Gemini) for evaluation on two tasks: selecting the correct bug report title and bug report summary from a set of options. Our results show that LLMs performed generally well in evaluating bug report summaries, with GPT-4o outperforming the other LLMs. Additionally, both humans and LLMs showed consistent decision-making, but humans experienced fatigue, impacting their accuracy over time. Our results indicate that LLMs demonstrate potential for being considered as automated evaluators for bug report summarization, which could allow scaling up evaluations while reducing human evaluators effort and fatigue.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.