Computer Science > Computer Vision and Pattern Recognition
[Submitted on 7 Sep 2024]
Title:C2F-CHART: A Curriculum Learning Approach to Chart Classification
View PDF HTML (experimental)Abstract:In scientific research, charts are usually the primary method for visually representing data. However, the accessibility of charts remains a significant concern. In an effort to improve chart understanding pipelines, we focus on optimizing the chart classification component. We leverage curriculum learning, which is inspired by the human learning process. In this paper, we introduce a novel training approach for chart classification that utilizes coarse-to-fine curriculum learning. Our approach, which we name C2F-CHART (for coarse-to-fine) exploits inter-class similarities to create learning tasks of varying difficulty levels. We benchmark our method on the ICPR 2022 CHART-Infographics UB UNITEC PMC dataset, outperforming the state-of-the-art results.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.