Electrical Engineering and Systems Science > Systems and Control
[Submitted on 9 Sep 2024]
Title:On the Convergence of Sigmoid and tanh Fuzzy General Grey Cognitive Maps
View PDF HTML (experimental)Abstract:Fuzzy General Grey Cognitive Map (FGGCM) and Fuzzy Grey Cognitive Map (FGCM) are extensions of Fuzzy Cognitive Map (FCM) in terms of uncertainty. FGGCM allows for the processing of general grey number with multiple intervals, enabling FCM to better address uncertain situations. Although the convergence of FCM and FGCM has been discussed in many literature, the convergence of FGGCM has not been thoroughly explored. This paper aims to fill this research gap. First, metrics for the general grey number space and its vector space is given and proved using the Minkowski inequality. By utilizing the characteristic that Cauchy sequences are convergent sequences, the completeness of these two space is demonstrated. On this premise, utilizing Banach fixed point theorem and Browder-Gohde-Kirk fixed point theorem, combined with Lagrange's mean value theorem and Cauchy's inequality, deduces the sufficient conditions for FGGCM to converge to a unique fixed point when using tanh and sigmoid functions as activation functions. The sufficient conditions for the kernels and greyness of FGGCM to converge to a unique fixed point are also provided separately. Finally, based on Web Experience and Civil engineering FCM, designed corresponding FGGCM with sigmoid and tanh as activation functions by modifying the weights to general grey numbers. By comparing with the convergence theorems of FCM and FGCM, the effectiveness of the theorems proposed in this paper was verified. It was also demonstrated that the convergence theorems of FCM are special cases of the theorems proposed in this paper. The study for convergence of FGGCM is of great significance for guiding the learning algorithm of FGGCM, which is needed for designing FGGCM with specific fixed points, lays a solid theoretical foundation for the application of FGGCM in fields such as control, prediction, and decision support systems.
Current browse context:
eess.SY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.