Computer Science > Computer Vision and Pattern Recognition
[Submitted on 25 Aug 2024]
Title:Transformer-Enhanced Iterative Feedback Mechanism for Polyp Segmentation
View PDF HTML (experimental)Abstract:Colorectal cancer (CRC) is the third most common cause of cancer diagnosed in the United States and the second leading cause of cancer-related death among both genders. Notably, CRC is the leading cause of cancer in younger men less than 50 years old. Colonoscopy is considered the gold standard for the early diagnosis of CRC. Skills vary significantly among endoscopists, and a high miss rate is reported. Automated polyp segmentation can reduce the missed rates, and timely treatment is possible in the early stage. To address this challenge, we introduce \textit{\textbf{\ac{FANetv2}}}, an advanced encoder-decoder network designed to accurately segment polyps from colonoscopy images. Leveraging an initial input mask generated by Otsu thresholding, FANetv2 iteratively refines its binary segmentation masks through a novel feedback attention mechanism informed by the mask predictions of previous epochs. Additionally, it employs a text-guided approach that integrates essential information about the number (one or many) and size (small, medium, large) of polyps to further enhance its feature representation capabilities. This dual-task approach facilitates accurate polyp segmentation and aids in the auxiliary classification of polyp attributes, significantly boosting the model's performance. Our comprehensive evaluations on the publicly available BKAI-IGH and CVC-ClinicDB datasets demonstrate the superior performance of FANetv2, evidenced by high dice similarity coefficients (DSC) of 0.9186 and 0.9481, along with low Hausdorff distances of 2.83 and 3.19, respectively. The source code for FANetv2 is available at this https URL.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.