Computer Science > Robotics
[Submitted on 10 Sep 2024 (v1), last revised 13 Jan 2025 (this version, v3)]
Title:An Adaptive Sliding Window Estimator for Positioning of Unmanned Aerial Vehicle Using a Single Anchor
View PDF HTML (experimental)Abstract:Localization using a single range anchor combined with onboard optical-inertial odometry offers a lightweight solution that provides multidimensional measurements for the positioning of unmanned aerial vehicles. Unfortunately, the performance of such lightweight sensors varies with the dynamic environment, and the fidelity of the dynamic model is also severely affected by environmental aerial flow. To address this challenge, we propose an adaptive sliding window estimator equipped with an estimation reliability evaluator, where the states, noise covariance matrices and aerial drag are estimated simultaneously. The aerial drag effects are first evaluated based on posterior states and covariance. Then, an augmented Kalman filter is designed to pre-process multidimensional measurements and inherit historical information. Subsequently, an inverse-Wishart smoother is employed to estimate posterior states and covariance matrices. To further suppress potential divergence, a reliability evaluator is devised to infer estimation errors. We further determine the fidelity of each sensor based on the error propagation. Extensive experiments are conducted in both standard and harsh environments, demonstrating the adaptability and robustness of the proposed method. The root mean square error reaches 0.15 m, outperforming the state-of-the-art approach.
Submission history
From: Kaiwen Xiong [view email][v1] Tue, 10 Sep 2024 13:34:53 UTC (6,374 KB)
[v2] Fri, 13 Sep 2024 09:26:46 UTC (6,374 KB)
[v3] Mon, 13 Jan 2025 09:53:48 UTC (4,745 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.