Statistics > Machine Learning
[Submitted on 11 Sep 2024]
Title:Weather-Informed Probabilistic Forecasting and Scenario Generation in Power Systems
View PDF HTML (experimental)Abstract:The integration of renewable energy sources (RES) into power grids presents significant challenges due to their intrinsic stochasticity and uncertainty, necessitating the development of new techniques for reliable and efficient forecasting. This paper proposes a method combining probabilistic forecasting and Gaussian copula for day-ahead prediction and scenario generation of load, wind, and solar power in high-dimensional contexts. By incorporating weather covariates and restoring spatio-temporal correlations, the proposed method enhances the reliability of probabilistic forecasts in RES. Extensive numerical experiments compare the effectiveness of different time series models, with performance evaluated using comprehensive metrics on a real-world and high-dimensional dataset from Midcontinent Independent System Operator (MISO). The results highlight the importance of weather information and demonstrate the efficacy of the Gaussian copula in generating realistic scenarios, with the proposed weather-informed Temporal Fusion Transformer (WI-TFT) model showing superior performance.
Current browse context:
stat.ML
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.