High Energy Physics - Theory
[Submitted on 11 Sep 2024 (v1), last revised 7 Oct 2024 (this version, v2)]
Title:Flat space gravity at finite cutoff
View PDF HTML (experimental)Abstract:We study the thermodynamics of Einstein gravity with vanishing cosmological constant subjected to conformal boundary conditions. Our focus is on comparing the series of subextensive terms to predictions from thermal effective field theory, with which we find agreement for the boundary theory on a spatial sphere, hyperbolic space, and flat space. We calculate the leading Wilson coefficients and observe that the first subextensive correction to the free energy is negative. This violates a conjectured bound on this coefficient in quantum field theory, which we interpret as a signal that gravity does not fully decouple in the putative boundary dual.
Submission history
From: Sanjit Shashi [view email][v1] Wed, 11 Sep 2024 22:04:57 UTC (109 KB)
[v2] Mon, 7 Oct 2024 21:00:38 UTC (110 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.