Computer Science > Human-Computer Interaction
[Submitted on 12 Sep 2024]
Title:Customized Mid-Air Gestures for Accessibility: A $B Recognizer for Multi-Dimensional Biosignal Gestures
View PDF HTML (experimental)Abstract:Biosignal interfaces, using sensors in, on, or around the body, promise to enhance wearables interaction and improve device accessibility for people with motor disabilities. However, biosignals are multi-modal, multi-dimensional, and noisy, requiring domain expertise to design input features for gesture classifiers. The \$B-recognizer enables mid-air gesture recognition without needing expertise in biosignals or algorithms. \$B resamples, normalizes, and performs dimensionality reduction to reduce noise and enhance signals relevant to the recognition. We tested \$B on a dataset of 26 participants with and 8 participants without upper-body motor disabilities performing personalized ability-based gestures. For two conditions (user-dependent, gesture articulation variability), \$B outperformed our comparison algorithms (traditional machine learning with expert features and deep learning), with > 95% recognition rate. For the user-independent condition, \$B and deep learning performed comparably for participants with disabilities. Our biosignal dataset is publicly available online. $B highlights the potential and feasibility of accessible biosignal interfaces.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.