Computer Science > Human-Computer Interaction
[Submitted on 13 Sep 2024]
Title:Synthetic Human Memories: AI-Edited Images and Videos Can Implant False Memories and Distort Recollection
View PDF HTML (experimental)Abstract:AI is increasingly used to enhance images and videos, both intentionally and unintentionally. As AI editing tools become more integrated into smartphones, users can modify or animate photos into realistic videos. This study examines the impact of AI-altered visuals on false memories--recollections of events that didn't occur or deviate from reality. In a pre-registered study, 200 participants were divided into four conditions of 50 each. Participants viewed original images, completed a filler task, then saw stimuli corresponding to their assigned condition: unedited images, AI-edited images, AI-generated videos, or AI-generated videos of AI-edited images. AI-edited visuals significantly increased false recollections, with AI-generated videos of AI-edited images having the strongest effect (2.05x compared to control). Confidence in false memories was also highest for this condition (1.19x compared to control). We discuss potential applications in HCI, such as therapeutic memory reframing, and challenges in ethical, legal, political, and societal domains.
Submission history
From: Chayapatr Archiwaranguprok [view email][v1] Fri, 13 Sep 2024 15:08:39 UTC (7,545 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.