Computer Science > Robotics
[Submitted on 18 Sep 2024]
Title:XP-MARL: Auxiliary Prioritization in Multi-Agent Reinforcement Learning to Address Non-Stationarity
View PDFAbstract:Non-stationarity poses a fundamental challenge in Multi-Agent Reinforcement Learning (MARL), arising from agents simultaneously learning and altering their policies. This creates a non-stationary environment from the perspective of each individual agent, often leading to suboptimal or even unconverged learning outcomes. We propose an open-source framework named XP-MARL, which augments MARL with auxiliary prioritization to address this challenge in cooperative settings. XP-MARL is 1) founded upon our hypothesis that prioritizing agents and letting higher-priority agents establish their actions first would stabilize the learning process and thus mitigate non-stationarity and 2) enabled by our proposed mechanism called action propagation, where higher-priority agents act first and communicate their actions, providing a more stationary environment for others. Moreover, instead of using a predefined or heuristic priority assignment, XP-MARL learns priority-assignment policies with an auxiliary MARL problem, leading to a joint learning scheme. Experiments in a motion-planning scenario involving Connected and Automated Vehicles (CAVs) demonstrate that XP-MARL improves the safety of a baseline model by 84.4% and outperforms a state-of-the-art approach, which improves the baseline by only 12.8%. Code: this http URL
Current browse context:
cs.RO
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.