Computer Science > Computer Vision and Pattern Recognition
[Submitted on 19 Sep 2024 (v1), last revised 3 Oct 2024 (this version, v2)]
Title:ERIC: Estimating Rainfall with Commodity Doorbell Camera for Precision Residential Irrigation
View PDF HTML (experimental)Abstract:Current state-of-the-art residential irrigation systems, such as WaterMyYard, rely on rainfall data from nearby weather stations to adjust irrigation amounts. However, the accuracy of rainfall data is compromised by the limited spatial resolution of rain gauges and the significant variability of hyperlocal rainfall, leading to substantial water waste. To improve irrigation efficiency, we developed a cost-effective irrigation system, dubbed ERIC, which employs machine learning models to estimate rainfall from commodity doorbell camera footage and optimizes irrigation schedules without human intervention. Specifically, we: a) designed novel visual and audio features with lightweight neural network models to infer rainfall from the camera at the edge, preserving user privacy; b) built a complete end-to-end irrigation system on Raspberry Pi 4, costing only \$75. We deployed the system across five locations (collecting over 750 hours of video) with varying backgrounds and light conditions. Comprehensive evaluation validates that ERIC achieves state-of-the-art rainfall estimation performance ($\sim$ 5mm/day), saving 9,112 gallons/month of water, translating to \$28.56/month in utility savings. Data and code are available at this https URL
Submission history
From: Tian Liu [view email][v1] Thu, 19 Sep 2024 22:11:08 UTC (11,689 KB)
[v2] Thu, 3 Oct 2024 22:06:25 UTC (11,949 KB)
Current browse context:
cs.CV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.