Computer Science > Robotics
[Submitted on 20 Sep 2024]
Title:Velocity Field: An Informative Traveling Cost Representation for Trajectory Planning
View PDF HTML (experimental)Abstract:Trajectory planning involves generating a series of space points to be followed in the near future. However, due to the complex and uncertain nature of the driving environment, it is impractical for autonomous vehicles~(AVs) to exhaustively design planning rules for optimizing future trajectories. To address this issue, we propose a local map representation method called Velocity Field. This approach provides heading and velocity priors for trajectory planning tasks, simplifying the planning process in complex urban driving. The heading and velocity priors can be learned from demonstrations of human drivers using our proposed loss. Additionally, we developed an iterative sampling-based planner to train and compare the differences between local map representations. We investigated local map representation forms for planning performance on a real-world dataset. Compared to learned rasterized cost maps, our method demonstrated greater reliability and computational efficiency.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.