Quantum Physics
[Submitted on 19 Sep 2024]
Title:Solving Combinatorial Optimization Problems on a Photonic Quantum Computer
View PDF HTML (experimental)Abstract:Combinatorial optimization problems pose significant computational challenges across various fields, from logistics to cryptography. Traditional computational methods often struggle with their exponential complexity, motivating exploration into alternative paradigms such as quantum computing. In this paper, we investigate the application of photonic quantum computing to solve combinatorial optimization problems. Leveraging the principles of quantum mechanics, we demonstrate how photonic quantum computers can efficiently explore solution spaces and identify optimal solutions for a range of combinatorial problems. We provide an overview of quantum algorithms tailored for combinatorial optimization for different quantum architectures (boson sampling, quantum annealing and gate-based quantum computing). Additionally, we discuss the advantages and challenges of implementing those algorithms on photonic quantum hardware. Through experiments run on an 8-qumode photonic quantum device, as well as numerical simulations, we evaluate the performance of photonic quantum computers in solving representative combinatorial optimization problems, such as the Max-Cut problem and the Job Shop Scheduling Problem.
Submission history
From: Krzysztof Kurowski [view email][v1] Thu, 19 Sep 2024 20:57:24 UTC (938 KB)
Current browse context:
quant-ph
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.