Computer Science > Machine Learning
[Submitted on 20 Sep 2024]
Title:Multi-omics data integration for early diagnosis of hepatocellular carcinoma (HCC) using machine learning
View PDFAbstract:The complementary information found in different modalities of patient data can aid in more accurate modelling of a patient's disease state and a better understanding of the underlying biological processes of a disease. However, the analysis of multi-modal, multi-omics data presents many challenges, including high dimensionality and varying size, statistical distribution, scale and signal strength between modalities. In this work we compare the performance of a variety of ensemble machine learning algorithms that are capable of late integration of multi-class data from different modalities. The ensemble methods and their variations tested were i) a voting ensemble, with hard and soft vote, ii) a meta learner, iii) a multi-modal Adaboost model using a hard vote, a soft vote and a meta learner to integrate the modalities on each boosting round, the PB-MVBoost model and a novel application of a mixture of experts model. These were compared to simple concatenation as a baseline. We examine these methods using data from an in-house study on hepatocellular carcinoma (HCC), along with four validation datasets on studies from breast cancer and irritable bowel disease (IBD). Using the area under the receiver operating curve as a measure of performance we develop models that achieve a performance value of up to 0.85 and find that two boosted methods, PB-MVBoost and Adaboost with a soft vote were the overall best performing models. We also examine the stability of features selected, and the size of the clinical signature determined. Finally, we provide recommendations for the integration of multi-modal multi-class data.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.