Computer Science > Networking and Internet Architecture
[Submitted on 24 Sep 2024]
Title:Toward Mixture-of-Experts Enabled Trustworthy Semantic Communication for 6G Networks
View PDF HTML (experimental)Abstract:Semantic Communication (SemCom) plays a pivotal role in 6G networks, offering a viable solution for future efficient communication. Deep Learning (DL)-based semantic codecs further enhance this efficiency. However, the vulnerability of DL models to security threats, such as adversarial attacks, poses significant challenges for practical applications of SemCom systems. These vulnerabilities enable attackers to tamper with messages and eavesdrop on private information, especially in wireless communication scenarios. Although existing defenses attempt to address specific threats, they often fail to simultaneously handle multiple heterogeneous attacks. To overcome this limitation, we introduce a novel Mixture-of-Experts (MoE)-based SemCom system. This system comprises a gating network and multiple experts, each specializing in different security challenges. The gating network adaptively selects suitable experts to counter heterogeneous attacks based on user-defined security requirements. Multiple experts collaborate to accomplish semantic communication tasks while meeting the security requirements of users. A case study in vehicular networks demonstrates the efficacy of the MoE-based SemCom system. Simulation results show that the proposed MoE-based SemCom system effectively mitigates concurrent heterogeneous attacks, with minimal impact on downstream task accuracy.
Current browse context:
cs.NI
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.