Computer Science > Distributed, Parallel, and Cluster Computing
[Submitted on 25 Sep 2024]
Title:Scalable quality control on processing of large diffusion-weighted and structural magnetic resonance imaging datasets
View PDFAbstract:Proper quality control (QC) is time consuming when working with large-scale medical imaging datasets, yet necessary, as poor-quality data can lead to erroneous conclusions or poorly trained machine learning models. Most efforts to reduce data QC time rely on outlier detection, which cannot capture every instance of algorithm failure. Thus, there is a need to visually inspect every output of data processing pipelines in a scalable manner. We design a QC pipeline that allows for low time cost and effort across a team setting for a large database of diffusion weighted and structural magnetic resonance images. Our proposed method satisfies the following design criteria: 1.) a consistent way to perform and manage quality control across a team of researchers, 2.) quick visualization of preprocessed data that minimizes the effort and time spent on the QC process without compromising the condition or caliber of the QC, and 3.) a way to aggregate QC results across pipelines and datasets that can be easily shared. In addition to meeting these design criteria, we also provide information on what a successful output should be and common occurrences of algorithm failures for various processing pipelines. Our method reduces the time spent on QC by a factor of over 20 when compared to naively opening outputs in an image viewer and demonstrate how it can facilitate aggregation and sharing of QC results within a team. While researchers must spend time on robust visual QC of data, there are mechanisms by which the process can be streamlined and efficient.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.