Mathematics > Numerical Analysis
[Submitted on 26 Sep 2024]
Title:Explicit Local Time-Stepping for the Inhomogeneous Wave Equation with Optimal Convergence
View PDF HTML (experimental)Abstract:Adaptivity and local mesh refinement are crucial for the efficient numerical simulation of wave phenomena in complex geometry. Local mesh refinement, however, can impose a tiny time-step across the entire computational domain when using explicit time integration. By taking smaller time-steps yet only inside locally refined regions, local time-stepping methods overcome the stringent CFL stability restriction imposed on the global time-step by a small fraction of the elements without sacrificing explicitness. In [21], a leapfrog based local time-stepping method was proposed for the inhomogeneous wave equation, which applies standard leapfrog time-marching with a smaller time-step inside the refined region. Here, to remove potential instability at certain time-steps, a stabilized version is proposed which leads to optimal L2-error estimates under a CFL condition independent of the coarse-to-fine mesh ratio. Moreover, a weighted transition is introduced to restore optimal H1-convergence when the source is nonzero across the coarse-to-fine mesh interface. Numerical experiments corroborate the theoretical error estimates and illustrate the usefulness of these improvements.
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.