Quantum Physics
[Submitted on 30 Sep 2024]
Title:Satellite image classification with neural quantum kernels
View PDF HTML (experimental)Abstract:A practical application of quantum machine learning in real-world scenarios in the short term remains elusive, despite significant theoretical efforts. Image classification, a common task for classical models, has been used to benchmark quantum algorithms with simple datasets, but only few studies have tackled complex real-data classification challenges. In this work, we address such a gap by focusing on the classification of satellite images, a task of particular interest to the earth observation (EO) industry. We first preprocess the selected intrincate dataset by reducing its dimensionality. Subsequently, we employ neural quantum kernels (NQKs)- embedding quantum kernels (EQKs) constructed from trained quantum neural networks (QNNs)- to classify images which include solar panels. We explore both $1$-to-$n$ and $n$-to-$n$ NQKs. In the former, parameters from a single-qubit QNN's training construct an $n$-qubit EQK achieving a mean test accuracy over 86% with three features. In the latter, we iteratively train an $n$-qubit QNN to ensure scalability, using the resultant architecture to directly form an $n$-qubit EQK. In this case, a test accuracy over 88% is obtained for three features and 8 qubits. Additionally, we show that the results are robust against a suboptimal training of the QNN.
Submission history
From: Pablo Rodriguez-Grasa [view email][v1] Mon, 30 Sep 2024 14:52:00 UTC (6,588 KB)
Current browse context:
quant-ph
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.