Computer Science > Computation and Language
[Submitted on 1 Oct 2024]
Title:AlignSum: Data Pyramid Hierarchical Fine-tuning for Aligning with Human Summarization Preference
View PDF HTML (experimental)Abstract:Text summarization tasks commonly employ Pre-trained Language Models (PLMs) to fit diverse standard datasets. While these PLMs excel in automatic evaluations, they frequently underperform in human evaluations, indicating a deviation between their generated summaries and human summarization preferences. This discrepancy is likely due to the low quality of fine-tuning datasets and the limited availability of high-quality human-annotated data that reflect true human preference. To address this challenge, we introduce a novel human summarization preference alignment framework AlignSum. This framework consists of three parts: Firstly, we construct a Data Pymarid with extractive, abstractive, and human-annotated summary data. Secondly, we conduct the Gaussian Resampling to remove summaries with extreme lengths. Finally, we implement the two-stage hierarchical fine-tuning with Data Pymarid after Gaussian Resampling. We apply AlignSum to PLMs on the human-annotated CNN/DailyMail and BBC XSum datasets. Experiments show that with AlignSum, PLMs like BART-Large surpass 175B GPT-3 in both automatic and human evaluations. This demonstrates that AlignSum significantly enhances the alignment of language models with human summarization preferences.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.