Computer Science > Machine Learning
[Submitted on 3 Oct 2024]
Title:Density based Spatial Clustering of Lines via Probabilistic Generation of Neighbourhood
View PDF HTML (experimental)Abstract:Density based spatial clustering of points in $\mathbb{R}^n$ has a myriad of applications in a variety of industries. We generalise this problem to the density based clustering of lines in high-dimensional spaces, keeping in mind there exists no valid distance measure that follows the triangle inequality for lines. In this paper, we design a clustering algorithm that generates a customised neighbourhood for a line of a fixed volume (given as a parameter), based on an optional parameter as a continuous probability density function. This algorithm is not sensitive to the outliers and can effectively identify the noise in the data using a cardinality parameter. One of the pivotal applications of this algorithm is clustering data points in $\mathbb{R}^n$ with missing entries, while utilising the domain knowledge of the respective data. In particular, the proposed algorithm is able to cluster $n$-dimensional data points that contain at least $(n-1)$-dimensional information. We illustrate the neighbourhoods for the standard probability distributions with continuous probability density functions and demonstrate the effectiveness of our algorithm on various synthetic and real-world datasets (e.g., rail and road networks). The experimental results also highlight its application in clustering incomplete data.
Submission history
From: Malay Bhattacharyya [view email][v1] Thu, 3 Oct 2024 08:17:11 UTC (451 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.