Computer Science > Computer Vision and Pattern Recognition
[Submitted on 6 Oct 2024]
Title:Enhancing 3D Human Pose Estimation Amidst Severe Occlusion with Dual Transformer Fusion
View PDF HTML (experimental)Abstract:In the field of 3D Human Pose Estimation from monocular videos, the presence of diverse occlusion types presents a formidable challenge. Prior research has made progress by harnessing spatial and temporal cues to infer 3D poses from 2D joint observations. This paper introduces a Dual Transformer Fusion (DTF) algorithm, a novel approach to obtain a holistic 3D pose estimation, even in the presence of severe occlusions. Confronting the issue of occlusion-induced missing joint data, we propose a temporal interpolation-based occlusion guidance mechanism. To enable precise 3D Human Pose Estimation, our approach leverages the innovative DTF architecture, which first generates a pair of intermediate views. Each intermediate-view undergoes spatial refinement through a self-refinement schema. Subsequently, these intermediate-views are fused to yield the final 3D human pose estimation. The entire system is end-to-end trainable. Through extensive experiments conducted on the Human3.6M and MPI-INF-3DHP datasets, our method's performance is rigorously evaluated. Notably, our approach outperforms existing state-of-the-art methods on both datasets, yielding substantial improvements. The code is available here: this https URL.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.