Computer Science > Machine Learning
[Submitted on 8 Oct 2024 (v1), last revised 10 Oct 2024 (this version, v2)]
Title:Private and Communication-Efficient Federated Learning based on Differentially Private Sketches
View PDF HTML (experimental)Abstract:Federated learning (FL) faces two primary challenges: the risk of privacy leakage due to parameter sharing and communication inefficiencies. To address these challenges, we propose DPSFL, a federated learning method that utilizes differentially private sketches. DPSFL compresses the local gradients of each client using a count sketch, thereby improving communication efficiency, while adding noise to the sketches to ensure differential privacy (DP). We provide a theoretical analysis of privacy and convergence for the proposed method. Gradient clipping is essential in DP learning to limit sensitivity and constrain the addition of noise. However, clipping introduces bias into the gradients, negatively impacting FL performance. To mitigate the impact of clipping, we propose an enhanced method, DPSFL-AC, which employs an adaptive clipping strategy. Experimental comparisons with existing techniques demonstrate the superiority of our methods concerning privacy preservation, communication efficiency, and model accuracy.
Submission history
From: Meifan Zhang [view email][v1] Tue, 8 Oct 2024 06:50:41 UTC (1,857 KB)
[v2] Thu, 10 Oct 2024 03:35:54 UTC (1,857 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.