Computer Science > Robotics
[Submitted on 11 Oct 2024]
Title:CoHRT: A Collaboration System for Human-Robot Teamwork
View PDF HTML (experimental)Abstract:Collaborative robots are increasingly deployed alongside humans in factories, hospitals, schools, and other domains to enhance teamwork and efficiency. Systems that seamlessly integrate humans and robots into cohesive teams for coordinated and efficient task execution are needed, enabling studies on how robot collaboration policies affect team performance and teammates' perceived fairness, trust, and safety. Such a system can also be utilized to study the impact of a robot's normative behavior on team collaboration. Additionally, it allows for investigation into how the legibility and predictability of robot actions affect human-robot teamwork and perceived safety and trust. Existing systems are limited, typically involving one human and one robot, and thus require more insight into broader team dynamics. Many rely on games or virtual simulations, neglecting the impact of a robot's physical presence. Most tasks are turn-based, hindering simultaneous execution and affecting efficiency. This paper introduces CoHRT (Collaboration System for Human-Robot Teamwork), which facilitates multi-human-robot teamwork through seamless collaboration, coordination, and communication. CoHRT utilizes a server-client-based architecture, a vision-based system to track task environments, and a simple interface for team action coordination. It allows for the design of tasks considering the human teammates' physical and mental workload and varied skill labels across the team members. We used CoHRT to design a collaborative block manipulation and jigsaw puzzle-solving task in a team of one Franka Emika Panda robot and two humans. The system enables recording multi-modal collaboration data to develop adaptive collaboration policies for robots. To further utilize CoHRT, we outline potential research directions in diverse human-robot collaborative tasks.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.