Computer Science > Machine Learning
[Submitted on 11 Oct 2024]
Title:Enhanced Federated Anomaly Detection Through Autoencoders Using Summary Statistics-Based Thresholding
View PDF HTML (experimental)Abstract:In Federated Learning (FL), anomaly detection (AD) is a challenging task due to the decentralized nature of data and the presence of non-IID data distributions. This study introduces a novel federated threshold calculation method that leverages summary statistics from both normal and anomalous data to improve the accuracy and robustness of anomaly detection using autoencoders (AE) in a federated setting. Our approach aggregates local summary statistics across clients to compute a global threshold that optimally separates anomalies from normal data while ensuring privacy preservation. We conducted extensive experiments using publicly available datasets, including Credit Card Fraud Detection, Shuttle, and Covertype, under various data distribution scenarios. The results demonstrate that our method consistently outperforms existing federated and local threshold calculation techniques, particularly in handling non-IID data distributions. This study also explores the impact of different data distribution scenarios and the number of clients on the performance of federated anomaly detection. Our findings highlight the potential of using summary statistics for threshold calculation in improving the scalability and accuracy of federated anomaly detection systems.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.