Computer Science > Computation and Language
[Submitted on 12 Oct 2024]
Title:\llinstruct: An Instruction-tuned model for English Language Proficiency Assessments
View PDF HTML (experimental)Abstract:We present \llinstruct: An 8B instruction-tuned model that is designed to generate content for English Language Proficiency Assessments (ELPA) and related applications. Our work involves creating a new dataset of 70K instructions and explanations in the ELPA domain and using these to fine-tune Llama-3 8B models (SFT) of different sizes (e.g., SFT-17K, SFT-50K and SFT-70K). Human evaluations are conducted over unseen instructions to compare these SFT models against SOTA models (e.g., Dolly-2, Mistral, Llama-3 base version, and GPT-3.5). The findings show although all three SFT models perform comparably, the model trained on largest instruction dataset -- SFT-70K - leads to the most valid outputs ready for assessments. However, although the SFT models perform better than larger model, e.g., GPT 3.5 on the aspect of explanations of outputs, many outputs still need human interventions to make them actual ready for real world assessments.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.