Computer Science > Machine Learning
[Submitted on 12 Oct 2024 (v1), last revised 18 Dec 2024 (this version, v2)]
Title:Mastering AI: Big Data, Deep Learning, and the Evolution of Large Language Models -- AutoML from Basics to State-of-the-Art Techniques
View PDF HTML (experimental)Abstract:A comprehensive guide to Automated Machine Learning (AutoML) is presented, covering fundamental principles, practical implementations, and future trends. The paper is structured to assist both beginners and experienced practitioners, with detailed discussions on popular AutoML tools such as TPOT, AutoGluon, and Auto-Keras. Emerging topics like Neural Architecture Search (NAS) and AutoML's applications in deep learning are also addressed. It is anticipated that this work will contribute to ongoing research and development in the field of AI and machine learning.
Submission history
From: Ming Liu [view email][v1] Sat, 12 Oct 2024 17:11:39 UTC (90 KB)
[v2] Wed, 18 Dec 2024 06:10:58 UTC (89 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.