Computer Science > Computation and Language
[Submitted on 15 Oct 2024]
Title:Jigsaw Puzzles: Splitting Harmful Questions to Jailbreak Large Language Models
View PDFAbstract:Large language models (LLMs) have exhibited outstanding performance in engaging with humans and addressing complex questions by leveraging their vast implicit knowledge and robust reasoning capabilities. However, such models are vulnerable to jailbreak attacks, leading to the generation of harmful responses. Despite recent research on single-turn jailbreak strategies to facilitate the development of defence mechanisms, the challenge of revealing vulnerabilities under multi-turn setting remains relatively under-explored. In this work, we propose Jigsaw Puzzles (JSP), a straightforward yet effective multi-turn jailbreak strategy against the advanced LLMs. JSP splits questions into harmless fractions as the input of each turn, and requests LLMs to reconstruct and respond to questions under multi-turn interaction. Our experimental results demonstrate that the proposed JSP jailbreak bypasses original safeguards against explicitly harmful content, achieving an average attack success rate of 93.76% on 189 harmful queries across 5 advanced LLMs (Gemini-1.5-Pro, Llama-3.1-70B, GPT-4, GPT-4o, GPT-4o-mini). Moreover, JSP achieves a state-of-the-art attack success rate of 92% on GPT-4 on the harmful query benchmark, and exhibits strong resistant to defence strategies. Warning: this paper contains offensive examples.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.