Computer Science > Hardware Architecture
[Submitted on 16 Oct 2024]
Title:An O(m+n)-Space Spatiotemporal Denoising Filter with Cache-Like Memories for Dynamic Vision Sensors
View PDFAbstract:Dynamic vision sensor (DVS) is novel neuromorphic imaging device that generates asynchronous events. Despite the high temporal resolution and high dynamic range features, DVS is faced with background noise problem. Spatiotemporal filter is an effective and hardware-friendly solution for DVS denoising but previous designs have large memory overhead or degraded performance issues. In this paper, we present a lightweight and real-time spatiotemporal denoising filter with set-associative cache-like memories, which has low space complexity of \text{O(m+n)} for DVS of $m\times n$ resolution. A two-stage pipeline for memory access with read cancellation feature is proposed to reduce power consumption. Further the bitwidth redundancy for event storage is exploited to minimize the memory footprint. We implemented our design on FPGA and experimental results show that it achieves state-of-the-art performance compared with previous spatiotemporal filters while maintaining low resource utilization and low power consumption of about 125mW to 210mW at 100MHz clock frequency.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.