Computer Science > Machine Learning
[Submitted on 18 Oct 2024]
Title:Stochastic Quasi-Newton Optimization in Large Dimensions Including Deep Network Training
View PDF HTML (experimental)Abstract:Our proposal is on a new stochastic optimizer for non-convex and possibly non-smooth objective functions typically defined over large dimensional design spaces. Towards this, we have tried to bridge noise-assisted global search and faster local convergence, the latter being the characteristic feature of a Newton-like search. Our specific scheme -- acronymed FINDER (Filtering Informed Newton-like and Derivative-free Evolutionary Recursion), exploits the nonlinear stochastic filtering equations to arrive at a derivative-free update that has resemblance with the Newton search employing the inverse Hessian of the objective function. Following certain simplifications of the update to enable a linear scaling with dimension and a few other enhancements, we apply FINDER to a range of problems, starting with some IEEE benchmark objective functions to a couple of archetypal data-driven problems in deep networks to certain cases of physics-informed deep networks. The performance of the new method vis-á-vis the well-known Adam and a few others bears evidence to its promise and potentialities for large dimensional optimization problems of practical interest.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.