Computer Science > Computer Vision and Pattern Recognition
[Submitted on 15 Oct 2024]
Title:Xeno-learning: knowledge transfer across species in deep learning-based spectral image analysis
View PDF HTML (experimental)Abstract:Novel optical imaging techniques, such as hyperspectral imaging (HSI) combined with machine learning-based (ML) analysis, have the potential to revolutionize clinical surgical imaging. However, these novel modalities face a shortage of large-scale, representative clinical data for training ML algorithms, while preclinical animal data is abundantly available through standardized experiments and allows for controlled induction of pathological tissue states, which is not ethically possible in patients. To leverage this situation, we propose a novel concept called "xeno-learning", a cross-species knowledge transfer paradigm inspired by xeno-transplantation, where organs from a donor species are transplanted into a recipient species. Using a total of 11,268 HSI images from humans as well as porcine and rat models, we show that although spectral signatures of organs differ across species, shared pathophysiological mechanisms manifest as comparable relative spectral changes across species. Such changes learnt in one species can thus be transferred to a new species via a novel "physiology-based data augmentation" method, enabling the large-scale secondary use of preclinical animal data for humans. The resulting ethical, monetary, and performance benefits of the proposed knowledge transfer paradigm promise a high impact of the methodology on future developments in the field.
Current browse context:
cs.CV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.