Computer Science > Machine Learning
[Submitted on 27 Oct 2024]
Title:Predicting Mortality and Functional Status Scores of Traumatic Brain Injury Patients using Supervised Machine Learning
View PDFAbstract:Traumatic brain injury (TBI) presents a significant public health challenge, often resulting in mortality or lasting disability. Predicting outcomes such as mortality and Functional Status Scale (FSS) scores can enhance treatment strategies and inform clinical decision-making. This study applies supervised machine learning (ML) methods to predict mortality and FSS scores using a real-world dataset of 300 pediatric TBI patients from the University of Colorado School of Medicine. The dataset captures clinical features, including demographics, injury mechanisms, and hospitalization outcomes. Eighteen ML models were evaluated for mortality prediction, and thirteen models were assessed for FSS score prediction. Performance was measured using accuracy, ROC AUC, F1-score, and mean squared error. Logistic regression and Extra Trees models achieved high precision in mortality prediction, while linear regression demonstrated the best FSS score prediction. Feature selection reduced 103 clinical variables to the most relevant, enhancing model efficiency and interpretability. This research highlights the role of ML models in identifying high-risk patients and supporting personalized interventions, demonstrating the potential of data-driven analytics to improve TBI care and integrate into clinical workflows.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.