Computer Science > Data Structures and Algorithms
[Submitted on 13 Nov 2024]
Title:Sublinear Metric Steiner Tree via Improved Bounds for Set Cover
View PDF HTML (experimental)Abstract:We study the metric Steiner tree problem in the sublinear query model. In this problem, for a set of $n$ points $V$ in a metric space given to us by means of query access to an $n\times n$ matrix $w$, and a set of terminals $T\subseteq V$, the goal is to find the minimum-weight subset of the edges that connects all the terminal vertices.
Recently, Chen, Khanna and Tan [SODA'23] gave an algorithm that uses $\widetilde{O}(n^{13/7})$ queries and outputs a $(2-\eta)$-estimate of the metric Steiner tree weight, where $\eta>0$ is a universal constant. A key component in their algorithm is a sublinear algorithm for a particular set cover problem where, given a set system $(U, F)$, the goal is to provide a multiplicative-additive estimate for $|U|-\textsf{SC}(U, F)$. Here $U$ is the set of elements, $F$ is the collection of sets, and $\textsf{SC}(U, F)$ denotes the optimal set cover size of $(U, F)$. In particular, their algorithm returns a $(1/4, \varepsilon\cdot|U|)$-multiplicative-additive estimate for this set cover problem using $\widetilde{O}(|F|^{7/4})$ membership oracle queries (querying whether a set $S$ contains an $e$), where $\varepsilon$ is a fixed constant.
In this work, we improve the query complexity of $(2-\eta)$-estimating the metric Steiner tree weight to $\widetilde{O}(n^{5/3})$ by showing a $(1/2, \varepsilon \cdot |U|)$-estimate for the above set cover problem using $\widetilde{O}(|F|^{5/3})$ membership queries. To design our set cover algorithm, we estimate the size of a random greedy maximal matching for an auxiliary multigraph that the algorithm constructs implicitly, without access to its adjacency list or matrix.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.