Computer Science > Computer Vision and Pattern Recognition
[Submitted on 14 Nov 2024]
Title:Mono2Stereo: Monocular Knowledge Transfer for Enhanced Stereo Matching
View PDF HTML (experimental)Abstract:The generalization and performance of stereo matching networks are limited due to the domain gap of the existing synthetic datasets and the sparseness of GT labels in the real datasets. In contrast, monocular depth estimation has achieved significant advancements, benefiting from large-scale depth datasets and self-supervised strategies. To bridge the performance gap between monocular depth estimation and stereo matching, we propose leveraging monocular knowledge transfer to enhance stereo matching, namely Mono2Stereo. We introduce knowledge transfer with a two-stage training process, comprising synthetic data pre-training and real-world data fine-tuning. In the pre-training stage, we design a data generation pipeline that synthesizes stereo training data from monocular images. This pipeline utilizes monocular depth for warping and novel view synthesis and employs our proposed Edge-Aware (EA) inpainting module to fill in missing contents in the generated images. In the fine-tuning stage, we introduce a Sparse-to-Dense Knowledge Distillation (S2DKD) strategy encouraging the distributions of predictions to align with dense monocular depths. This strategy mitigates issues with edge blurring in sparse real-world labels and enhances overall consistency. Experimental results demonstrate that our pre-trained model exhibits strong zero-shot generalization capabilities. Furthermore, domain-specific fine-tuning using our pre-trained model and S2DKD strategy significantly increments in-domain performance. The code will be made available soon.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.