Computer Science > Computer Vision and Pattern Recognition
[Submitted on 17 Nov 2024]
Title:Anomaly Detection for People with Visual Impairments Using an Egocentric 360-Degree Camera
View PDF HTML (experimental)Abstract:Recent advancements in computer vision have led to a renewed interest in developing assistive technologies for individuals with visual impairments. Although extensive research has been conducted in the field of computer vision-based assistive technologies, most of the focus has been on understanding contexts in images, rather than addressing their physical safety and security concerns. To address this challenge, we propose the first step towards detecting anomalous situations for visually impaired people by observing their entire surroundings using an egocentric 360-degree camera. We first introduce a novel egocentric 360-degree video dataset called VIEW360 (Visually Impaired Equipped with Wearable 360-degree camera), which contains abnormal activities that visually impaired individuals may encounter, such as shoulder surfing and pickpocketing. Furthermore, we propose a new architecture called the FDPN (Frame and Direction Prediction Network), which facilitates frame-level prediction of abnormal events and identifying of their directions. Finally, we evaluate our approach on our VIEW360 dataset and the publicly available UCF-Crime and Shanghaitech datasets, demonstrating state-of-the-art performance.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.