Computer Science > Computer Vision and Pattern Recognition
[Submitted on 25 Nov 2024 (v1), last revised 7 Jan 2025 (this version, v2)]
Title:A Review of Bayesian Uncertainty Quantification in Deep Probabilistic Image Segmentation
View PDF HTML (experimental)Abstract:Advancements in image segmentation play an integral role within the broad scope of Deep Learning-based Computer Vision. Furthermore, their widespread applicability in critical real-world tasks has resulted in challenges related to the reliability of such algorithms. Hence, uncertainty quantification has been extensively studied within this context, enabling the expression of model ignorance (epistemic uncertainty) or data ambiguity (aleatoric uncertainty) to prevent uninformed decision-making. Due to the rapid adoption of Convolutional Neural Network (CNN)-based segmentation models in high-stake applications, a substantial body of research has been published on this very topic, causing its swift expansion into a distinct field. This work provides a comprehensive overview of probabilistic segmentation, by discussing fundamental concepts of uncertainty quantification, governing advancements in the field as well as the application to various tasks. Moreover, literature on both types of uncertainties trace back to four key applications: (1) to quantify statistical inconsistencies in the annotation process due ambiguous images, (2) correlating prediction error with uncertainty, (3) expanding the model hypothesis space for better generalization, and (4) Active Learning. An extensive discussion follows that includes an overview of utilized datasets for each of the applications and evaluation of the available methods. We also highlight challenges related to architectures, uncertainty quantification methods, standardization and benchmarking, and finally end with recommendations for future work such as methods based on single forward passes and models that appropriately leverage volumetric data.
Submission history
From: Amaan Valiuddin [view email][v1] Mon, 25 Nov 2024 13:26:09 UTC (5,446 KB)
[v2] Tue, 7 Jan 2025 09:34:51 UTC (3,604 KB)
Current browse context:
cs.CV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.