Computer Science > Machine Learning
[Submitted on 27 Nov 2024]
Title:Dynamic Logistic Ensembles with Recursive Probability and Automatic Subset Splitting for Enhanced Binary Classification
View PDF HTML (experimental)Abstract:This paper presents a novel approach to binary classification using dynamic logistic ensemble models. The proposed method addresses the challenges posed by datasets containing inherent internal clusters that lack explicit feature-based separations. By extending traditional logistic regression, we develop an algorithm that automatically partitions the dataset into multiple subsets, constructing an ensemble of logistic models to enhance classification accuracy. A key innovation in this work is the recursive probability calculation, derived through algebraic manipulation and mathematical induction, which enables scalable and efficient model construction. Compared to traditional ensemble methods such as Bagging and Boosting, our approach maintains interpretability while offering competitive performance. Furthermore, we systematically employ maximum likelihood and cost functions to facilitate the analytical derivation of recursive gradients as functions of ensemble depth. The effectiveness of the proposed approach is validated on a custom dataset created by introducing noise and shifting data to simulate group structures, resulting in significant performance improvements with layers. Implemented in Python, this work balances computational efficiency with theoretical rigor, providing a robust and interpretable solution for complex classification tasks with broad implications for machine learning applications. Code at this https URL
Submission history
From: Mohammad Zubair Khan [view email][v1] Wed, 27 Nov 2024 00:22:55 UTC (542 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.