Computer Science > Computer Vision and Pattern Recognition
[Submitted on 29 Nov 2024 (v1), last revised 8 Dec 2024 (this version, v2)]
Title:Robust Bayesian Scene Reconstruction by Leveraging Retrieval-Augmented Priors
View PDF HTML (experimental)Abstract:Constructing 3D representations of object geometry is critical for many downstream robotics tasks, particularly tabletop manipulation problems. These representations must be built from potentially noisy partial observations. In this work, we focus on the problem of reconstructing a multi-object scene from a single RGBD image, generally from a fixed camera in the scene. Traditional scene representation methods generally cannot infer the geometry of unobserved regions of the objects from the image. Attempts have been made to leverage deep learning to train on a dataset of observed objects and representations, and then generalize to new observations. However, this can be brittle to noisy real-world observations and objects not contained in the dataset, and cannot reason about their confidence. We propose BRRP, a reconstruction method that leverages preexisting mesh datasets to build an informative prior during robust probabilistic reconstruction. In order to make our method more efficient, we introduce the concept of retrieval-augmented prior, where we retrieve relevant components of our prior distribution during inference. The prior is used to estimate the geometry of occluded portions of the in-scene objects. Our method produces a distribution over object shape that can be used for reconstruction or measuring uncertainty. We evaluate our method in both simulated scenes and in the real world. We demonstrate the robustness of our method against deep learning-only approaches while being more accurate than a method without an informative prior.
Submission history
From: Herbert Wright [view email][v1] Fri, 29 Nov 2024 04:14:17 UTC (4,068 KB)
[v2] Sun, 8 Dec 2024 01:04:18 UTC (4,930 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.